Let G denote a multigraph with edge set $E(G)$, let $\mu(G)$ denote the maximum edge multiplicity in G, and let P_k denote the path on k vertices. Heinrich et al. (1999) showed that P_4 decomposes a connected 4-regular graph G if and only if $|E(G)|$ is divisible by 3. We show that P_4 decomposes a connected 4-regular multigraph G with $\mu(G) \leq 2$ if and only if no 3 vertices of G induce more than 4 edges and $|E(G)|$ is divisible by 3. Oksimets (2003) proved that for all integers $k \geq 2$, P_4 decomposes a connected $2k$-regular graph G if and only if $|E(G)|$ is divisible by 3. We prove that for all integers $k \geq 2$, the problem of determining if P_4 decomposes a $(2k+1)$-regular graph is NP-Complete. El-Zanati et al. (2014) showed that for all integers $k \geq 1$, every $6k$-regular multigraph with $\mu(G) \leq 2k$ has a P_4-decomposition. We show that unless P = NP, this result is best possible with respect to $\mu(G)$ by proving that for all integers $k \geq 3$ the problem of determining if P_4 decomposes a $2k$-regular multigraph with $\mu(G) \leq \left\lfloor \frac{2k}{3} \right\rfloor + 1$ is NP-Complete.