Elevated atmospheric CO$_2$ does not conserve soil water in the Mojave Desert

Robert S. Nowak,1 Stephen F. Zitzer,1,2 Derek Babcock,2 Vickie Smith-Longozo,1 Therese N. Charlet,3 James S. Coleman,2 Jeffrey R. Seemann,4 and Stanley D. Smith3

1Dept of Environmental and Resource Sciences, University of Nevada–Reno, Reno, Nevada 89557 USA
2Division of Earth and Ecosystem Sciences, Desert Research Institute, Las Vegas, Nevada 89119 USA
3Department of Biological Sciences, University of Nevada–Las Vegas, Las Vegas, Nevada 89154 USA
4Department of Biochemistry, University of Nevada–Reno, Reno, Nevada 89557 USA

Abstract Numerous studies, including those of desert plants, have shown reduced stomatal conductance under elevated atmospheric CO$_2$. As a consequence, soil water has been postulated to increase. Soil water was measured for >4 yr at the Nevada Desert Free Air CO$_2$ Enrichment (FACE) Facility to determine if elevated atmospheric CO$_2$ conserves soil water for a desert scrub community in the Mojave Desert. We measured soil water in the top 0.2 and 0.5 m of soil with time domain reflectometry and to 1.85 m with a neutron probe for the three treatments at Desert FACE: elevated CO$_2$ (550 μmol/mol), blower control (ambient CO$_2$), and non-ring treatments. The treatment main effect was not significant in any analyses of variance. Although the treatment x date interaction was significant for soil water in the top 0.5 m of soil, the expected greater soil water for elevated CO$_2$ vs. ambient CO$_2$ only occurred on one sampling date. In contrast, soil water for that same depth was significantly lower under elevated CO$_2$ on six dates. Thus, we infer that increased water use from increased primary productivity (and therefore leaf area) under elevated CO$_2$ offset the decreased water use from reduced stomatal conductance, and hence soil water was not conserved under elevated CO$_2$ in the Mojave Desert, unlike other ecosystems.